按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
,就不是真的,因为,从箱子中抽出的号码不是偶数号,的确是可能的,因此,如果这个命题是真的,则从箱子中抽出的每一组都须包含一个奇数——这个结果显然与事实相矛盾。
因此,表达式CAcaLAca是应当被排斥的,而我们就得到:
P15。
CAcaLAca,从这个表达式,按照我们关于排斥的表达式的规则,就推出:13。×CP116—P115P16。
LAa。
亚里士多德的必然的同一律正如必然的同一原则LFx一样,应当被排斥。
这符合于我们一般的观点,按照这个观点,任何必然命题都不是真的。
表达式13的后件,即CACcaLAca,不能分离出,而承认有真的必然命题和断定强的L-扩展定律之间的不相容性,得到了有利于扩展定律的解决。
我不相信,任何其它模态逻辑系统能够圆满地解决这个古代的争论。
我在前面已经提到,亚里士多德企图驳斥三段论()不仅借助于例证,而且借助于一个纯粹逻辑的论证。
他断定:前提Aba和LAcb不能给出一个必然的结论,他说:“如果结论是必然的,那末,通过三段论第一格或第三格,从它就将推
…… 278
62第八章 亚里士多德的模态三段论
出有些b必然是a,但这是不正确的,因为b可以是这样:即可能任何一个b都不是a“
①。
亚里士多德这里指的是必然的Dari式和Darapti式,因为()与一个这样的式相结合,我们就能从它得出结果CAbaCLAcb-LIba。
从Darapti所作的证明是:17。
CpCqrCrCqsCpCqs12。
CAbaCLAcbLAca()
18。
CLAcaCLAcbLIba(Darapti)
17。
PAba,qLAcb,rLAca,SLIba×'C12—C18—11919。
CAba
CLAcbLIba从Dari所作的证明提供同样的结果,但是比较复杂一些。
亚里士多德似乎不注意前提LAcb,并且将这个结果解释为一个简单的蕴涵式:
P120
CAbaLIba,它显然是假的,而应予排斥。
或者也可能他想通过适当地对c的替代和省略,可以使LAcb成为真的。
如果是这样,他就错了,并且他的证明是失败的。
除此以外,我们还看到在这个例子中,借助于产生某些似乎是真的必然前提的词项去确定像19,12或10这样的断定命题的正确性,是多么困难。
因为很多逻辑学家相信,这样的命题实际上是真的,要用例子去
①《前分析篇》i。
9,30a25,(继续第25页注②的引文)
“因为,如果结论是必然的,那末,按照第一格和第三格,A也必然属于有些B。
但是,这是不正确的,因为B完全可能是这样的,即A可能根本不属于它。“
…… 279
58。有可能前提的各式A 762
使他们信服这些三段论的正确性是不可能的。
在结束这些讨论时,我们可以说,亚里士多德断定(∈)是正确的,而排斥()却是错误的。
德奥弗拉斯特斯和欧德谟斯在两个问题上都是错误的。
58。有可能前提的各式A亚里士多德的或然三段论的学说显露出一个非常奇怪的缺陷:为了有利于带有偶然前提的各式,带有可能前提的各式完全被忽略了。
按照大卫罗斯爵士的意见,“亚里士多德W经常在一个前提中,在‘既非不可能也非必然的意义上使用’∈‘δ∈D ∈αι一词,这里唯一正确的结论是其中∈’δ∈D F L H F∈αι表示‘不是不可能的’的意思,他象通常那样细心地指L H出了这一点”
①。
亚里士多德的确似乎细心地区分了∈‘δ∈D L F∈δθαι的两种涵义,当他说到,例如在阐述带有两个或然前提的第一格的各式时,在这些式中,∈’δ∈D ∈δθαι一词按照他F L所给的定义,即作为“偶然的”
,而不是在“可能的”的意义上去理解。
但是,他又说,这有时是被忽略的②。
谁能忽略这一点呢?
自然是亚里士多德自己或者他的某些学生,正由于∈‘δF∈D ∈σθαι一词的歧义性而造成的。
在《解释篇》中,∈‘δ∈D L Fóμ∈与δαó表示同一涵义③,而在《前分析篇》中,它L F J F H F①大卫罗斯编《前分析篇》,第4页;也参阅载于第286页的有效各式的表。
W②《前分析篇》,i。
14,3b21……“不应该在‘必然的’意义上来理解‘可能的’,而应该按照上面引述的定义来理解,但是这有时被忽视。”
③参阅第16页。
…… 280
862第八章 亚里士多德的模态三段论
具有两种意义。
一个词在两种意义上使用总是危险的,这两种意义可能在无意中被混淆,这种危险正象使用具有同一意义的两个不同的词一样。
亚里士多德有时说‘γωριf以代替∈’δM L M F∈∈αι,而也将后者在两种意义上使用①我们不能总有把握L H地确定他在什么意义上使用∈‘δ∈∈αι一词。
或许正是这F L H个名词的歧义性导致了他和他的朋友德奥弗拉斯特斯和欧德谟斯的争论。
因此,亚里士多德在引进偶然性以前,没有分别论述具有可能前提的各式。
这是深为遗憾的。
我们将弥补这个缺陷,而这个缺陷至今仍未为学者们所注意。
我们首先考察换位律。
亚里士多德是在《前分析篇》第一卷第三章开始说明这些定律的,在那里他说∈‘δ∈∈σθαι一F L词具有几种涵义。
然后他在对这个名词的不同涵义没有给予解释的情况下说:肯定命题的换位律对于∈‘δ∈∈σθαι的各F L种涵义都是一样的,但是否定命题的换位律对此却有区别。
他明白地陈述了:或然命题“每一个b可能是a”和“有些b可能是a”
(我使用“可能”一词,为的是包括两类或然命题)
,可以换成命题“有些a可能是b”
,它给出了可能性的公式:121。
CMAbaMIab和12。
CMIbaMIab。
全称否定命题的换位律只是用例子解释的,从这个例子我们可以得出公式:123。
CMEbaMEab。
①例如,参照《前分析篇》,i。
3,25a10(见注本页③)和i。
9,30a27(第234页注①)以及i。
13,32b30(第238页注①)。
…… 281
58。有可能前提的各式A 962
特称否定可能命题不能换位就被默然假定了①。
由此我们看到,亚里士多德在论述可能命题的换位律时多少有些粗心。
他显然不认为“可能性”概念具有任何重要意义。
公式121—123是正确的,并且容易从类似的关于实然命题的换位律借助于定理。
19。
CpqCMpMq而推出。
这同一定理,即强的M-扩展定律,可以使我们建立带有可能前提的整个三段论理论。
借助于古典命题演算我们从19式得出下述公式:124。
CpCqrCMpCMqMr和125。
CpCqrCpCMqMr。
公式124得出带有两个可能前提和一个可能的结论的式,因此,我们只需要在有效的实然式的前提和结论前面加上可能性的记号就行了。
例如,按照124式,从实然的Barbara式通过替代pAba,qAcb,rAca,我们就得出三段论:' ' '126。
C