友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
狗狗书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

亚里士多德的三段论-第56章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




    我们可以取邓斯司各脱原则作为例子:W59。

    CpCNpq,我们可以通过下述推论从它得出定律CpHpq,用语言表达即是:“如果p,那末,或者p或者q”

    :

    58。

    δCp‘×C59—60'60。

    CpHpq。

…… 244

    232第七章 模态逻辑系统

    如果我们想将我们的定义运用于克拉维乌斯原则:61。

    CNp,我们必须首先在58式中用p代q,从而得出

    58。

    qp×62'62。

    CδCNpqδHpq

    62。

    δC‘p×C61—63'63。

    CHp。

    (公式63读作:“如果或者p或者p,那末p”

    ,它是《数学原理》的作者们所采用的一个“基本命题”或公理。

    他们将这个公理正确地称为“重言式原则”

    ,因为这个公理所陈述的是两次叙说同一东西(α‘òDγ∈ι)

    ,“p或者p”

    ,就是仅只叙H        F H       Q M          F说了“p”。

    例如,邓斯司各脱原则在任何合理的意义上都不W是重言式。)

    58式的逆蕴涵式CδHpδqCNpq是与前一公式一起被给予的,它使我们有可能用CNpq去代换Hpq。

    的确,我们只要用替代规则和分离规则就能证明下述一般定理:(C)如果p和R是任何不包含δ的有意义的表达式,并且CδpδR是被断定的,那末,CδpδR也同样应当被断定。

    证明:(D)CδPδR

    (D)

    δCδ‘δP×(E)

    '(E)CCδPδPCδRδP

    (D)

    δCCδPδ‘CδRδP×(F)

    '(F)CCδPδPCδRδPCδPδRCδRδP(F)×C(E)—C(D)—(G)

…… 245

    49。模态逻辑的四值系统A                                                               332

    (G)CδRδP。

    所以,如果p和R不包含δ,并且其中一个可以解释为定义项而另一个为被定义项,那末,显然,任何具有CδPδR形式的被断定的表达式都是一个定义,因为p到处可以为R所代换,而R也到处可以为p所代换,这恰恰就是一个定义所具有的特性。

    49。模态逻辑的四值系统A模态逻辑的每一系统都必须包含基本模态逻辑以作为自己的固有部分,即必须在它的断定命题中包含M-公理:CpMp,PCMpp和PMp,与L-公理:CLp,PCpLp和PNLp。

    容易看到,M和L与二值演算中的四个函子V,S,N和F的任何一个都是有区别的。

    M不能是V,因为Mp是被排斥的,而Vp=Cpp却被断定;它也不能是S,因为CMpp是被排斥的,而CSp=Cpp却被断定,它也不能是N和F,因为CpMp被断定,而CpNp和CpFp=CpNCpp却被排斥。

    这对于L也同样如此。

    函子M和L在二值逻辑中不能得到解释。

    所以,任何模态逻辑系统都应当是多值的。

    另外还有一种观点,它也导致同样的结果。

    如果我们跟亚里士多德一样,承认某些未来的事件(例如海战)是偶然的,那末,今天陈述这些事件的命题就既不能是真的,也不能是假的,因此要有区别于1和0的第三个真值。

    根据这个观念,并且借助于真值表方法(我从皮尔士和施累德那里熟悉了这种方法)

    ,我在1920年建立了三值的模态逻辑系统,后来又在

…… 246

    432第七章 模态逻辑系统

    1930年的论文中发展了这个系统。

    ①今天我已了解到,这个系统不能满足我们关于模态的全部直觉,因而应当为下面所描述的系统所代替。

    我的意见是:在任何模态逻辑中都应当保存古典的命题演算。

    这种演算至今仍然表明它的确实性和有效性,而不应当毫无根据将它弃之一边。

    万幸得很,古典命题演算不仅有一个二值的真值表,而且还有足够的多值真值表。

    我曾试图将最简单的,对C—N—δ—P系统为足够的多值真值表,即四值真值表运用于模态逻辑,并且成功地获得了预期的结果。

    正如我们在第46节所看到的那样,真值表M2的元素是一对值1和0,它从下述等式推出N的真值:(z)N(a,b)=(Na,Nb)。

    表达式“(Na,Nb)”是一般形式(∈a,b)的特殊情况,这里∈和具有二值演算中的V,S,N和F等函子作为真值。

    因为∈的四个值中的每一个都可以和的四个值中的每一个相组合,我们就得出16种组合,这16种组合定义四值演算中具有一个主目的16个函子。

    我在其中找到两个函子,每一个都能代表M。

    这里我定义其中一个,而另一个我将在以后再讨论。

    (α)M(a,b)=(Sa,Vb)=(a,Cb)

    ①杨卢卡西维茨《论三值逻辑》(OlogicetrójwartosDciowej)

    ,载《哲学进W展》《Ruch

    Filozoficzny》,第五卷利沃夫(Lwów)

    ,1920;杨卢卡西维茨《命W题演算多值系统的哲学考察》(Philosophische

    Bemerkungen

    zumehrwertiCgen

    systemendes

    Ausagenkalküls)

    ,载《华沙科学与文学学会会刊》,第十三卷cl。

    3,1930。

…… 247

    49。模态逻辑的四值系统A                                                                    532

    在(α)的基础上我得出M的真值表M7,我用在第46节中所说的同样的简化法将M7变为真值表M8,即:(1,1)=1,(1,0)=2,(0,1)=3和(0,0)=0。

    这样,在得出M的真值表以后,我选择C,N和M作为基本词项,并且将我的模态逻辑系统建立在下述四个公理之上:51。

    CδpCδNpδq

    4。

    CpMp

    P5。

    CMppP7。

    Mp。

    推论的规则是关于断定的表达式和排斥的表达式的替代规则和分离规则。

    Lp是依靠δ定义引入的:C64。

    CδNMNpδLp。

    这表示:“NMNp”在任何地方都可以为“Lp”所替换,而反过来,“Lp”在任何地方也可以为“NMNp”所替换。

    同样的模态逻辑系统也可以在下述基础上建立:使用C,N和L作为基本词项,以及公理:51。(奇*书*网。整*理*提*供)

    CδpCδNpδq

    3。

    CLp

    P6。

    CpLpP8。

    NLp,

…… 248

    632第七章 模态逻辑系统

    和M的δ定义:C65。

    CδNLNpδMp。

    M9是这个系统的充分足够的真值表:

    我希望,在经过上述解释之后,每一个读者都可以借助于这个真值表去验证属于这个系统的任何公式,即证明断定的公式和否证排斥的公式。

    可以证明,这个系统在这样的意义上说是完全的,即属于这个系统的每一个有意义的表达式都是可以判定的,它或者被断定,或者被排斥。

    它在这样的意义上说也是一致的,即无矛盾的,这就是说任何一个有意义的表达式不能同时既被断定又被排斥。

    这一个公理的集合是独立的。

    我想强调一下,这个系统的公理完全是自明的。

    带有δ的公理应当为所有接受古典命题演算的逻辑学家所熟悉;带有M的公理也应当断定为真;推论的规则同样是自明的。

    在这个系统中所有正确推出的结果都应当为接受这些公理和推论规则的人所允许。

    没有真正的理由可以用来反对这个系统。

    我们也将看到,这个系统排斥了所有关于模态逻辑所引出的错

…… 249

    
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!