按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
但是这同一的方法却不能运用于公式45。
我们得出CMpCCLCpNLNp;而如果我们希望分离CMpNLNp,我们必须断定这必然的蕴涵式LCp。
而在这里,我们遇到了正如上节所叙述的同样的困难。
表达式LCpp是什么意思呢?
这个表达式,如果我们将它变形为pCp,它可以解释为关于所有命‘题的一般定律;但是,如果我们将LCpp运用于具体词项,例如运用于命题“二的二倍为五”时,这种变形就成为不可能的了。
实然蕴涵式:“如果二的二倍为五,那末二的二倍为五”是可以理解的,并且作为同一律Cpp的一个推断来说是真的;但是必然蕴涵式:“这是必然的:如果二的二倍为五,则二的二倍为五”
,是什么意思呢,这个奇怪的表达式不是关于所有数的一般定律,它充其量也只可能是某个必然定律的一个推断;但是一个必然命题的推断并非也必须是一个必然命题。
按照CLCpCp,(它是CLpp的一个代替式)Cpp是LCpp的推断,但不是一个必然命题。
从上面的论述得出,在解释亚历山大的证明时,将它前后文中的σμβαí∈ι一词与其解释为严格蕴涵,不如解释为实F质蕴涵,这的确要简便一些。
可是我们的问题仍未得到明确的解决。
因此,让我们转向为亚里士多德所接受的另一类断定的必然命题,即转向词项间的必然联系。
43。分析命题A亚里士多德断定了“这是必然的,人必定是动物”这个
…… 221
43。分析命题A 902
命题。
①他在这里所陈述的是主项“人”和谓项“动物”之间的必然联系,即词项之间的必然联系。
他显然将命题“人是动物”
,或者精确一点说“每一个人都是动物”必须是一个必然命题这一点,看作是自明的,因为他将“人”定义为一种“动物”
,因此谓项“动物”包含于主项“人”之中。
谓项包含于主项之中的命题就称为“分析”命题。
我们推测,亚里士多德会将所有根据定义作出的分析命题都看作必然命题,这或许是正确的,因为他在《后分析篇》中说到,本质的谓项必然属于事物,②而本质的谓项是从定义中得出的。
分析命题最明显的例子是其中主项与谓项同一的命题。
如果每一个人必定是动物,乃是必然的,那末,每一个人必定是人,更加是必然的。
同一律“每一个a都是a”乃是一个分析命题,从而也是必然命题。
这样,我们得到下述公式:(p)LAa,即:这是必然的,一个a必定是a。
亚里士多德没有陈述过同一律Aaa以作为他的实然三段论的一个原则;只有一处地方后来为I。
托玛斯所发现,那里亚里士多德在一个证明中用了这一个定律。
③因此,我们不能期望他已经知道了LAaa这个模态命题。
亚里士多德的同一律Aa(A表示“每一个——都是”
,a
①《前分析篇》,i。
9,30a30。
②《后分析篇》,j。
6,74b6。
“……本质地属于其主体的属性就必然地属于它们”。
③Ivo托玛斯教授,《混合逻辑》(Farago
Logica)
,《多米尼卡研究》,第W4卷,1951年版,第71页。
这段话读作(《前分析篇》,i。
2,68a19)
:“……
B也表述自身。“
…… 222
012第六章 亚里士多德的模态命题逻辑
是普遍词项的变项)
,与同一原则Fxx(F表示是“同一于”
,x是个体词项的变项)
,是有区别的。
后一原则属于同一理论,这个理论可以建立在下述公理的基础上:(q)Fx,即:x同一于x,(r)CFxyCxy,即:如果x同一于y,那末,如果R Rx满足,则y也满足,R R这里是有一个主目的构成命题的函子的一个变项。
现在,如R果所有的分析命题都是必然的,(q)就是必然的,我们也就会得出一个必然的原则:(s)LFx,即:必然x同一于x。
奎因已经发现:原则(s)如果被断定了,则会导致一个困难的结果,①因为,如果LFxx被断定,通过替代LFx,我R '们就可以从(r)得出(t)
,(LFX在这里起着具有一个主目的构成命题的函子的作用)
:(t)CFxyCLFxLFxy通过交换法得出(u)CLFxCFxyLFxy,从而推出命题:(V)CFxyLFxy。
这表示,任何两个个体,如果它们是同一的,它们就必然是同一的。
①W。
V。
奎因“模态包含物的三个等级”
,(“Thre
Grades
of
Modal
invol-vement“)
《第十一局国际哲学会议会刊》,第14卷,布鲁塞尔,(1953年)。
对于下面的论证,由我单独负责。
…… 223
4。一个亚里士多德的誖论A 112
相等关系经常被数学家作为同一看待,这种关系建立在同样的公理(q)和(r)的基础之上。
因此,我们可以将F解释为相等,将x和y解释为个别的数,并且说:如果等式是成立的,那末,它就必然是成立的。
公式(v)显然是错误的。
奎因举出一个例子以表明它的错误。
让x标志行星的数,而y标志数9。
(大)行星的数等于9,这在实际上是真的,但是它并不是必须等于9。
奎因试图以反对用这类单一词项替代变项的方法去克服这个困难。
但是,我认为,他这种反对是没有根据的。
公式(v)有另一个没有被奎因所发现的困难的结果。
依靠L的定义和易位律,我们从(v)得出这样的结果:(W)CMNFxyNFxy。
这表示“如果可能x不等y,那末x(事实上)不等于y”。
这个结果的错误可以从下述例子看出来:让我们假定掷骰子落下的数为x,可能下一次掷下来的数y,它不同于数x。
但是,如果可能x将不同于y,即不等于y,那末,按照(w)
,x将事实上不同于y。
这个结果显然是错误的,因为,可能两次掷出同一个数。
我的意见是,要解决上述困难只有一个办法,那就是我们必须不允许公式LFxx可被断定,即不允许同一性原则Fxx是必然的。
由于Fxx是一个典型的分析命题,并且由于没有理由认为这个原则与其它的分析命题有什么不同,我们不得不假定任何一个分析命题都不是必然的。
在进一步讨论这个重要的问题之前,让我们先将对亚里士多德模态概念的研究告一段落。
…… 224
212第六章 亚里士多德的模态命题逻辑
4。一个亚里士多德的誖论A有一个由亚里士多德所提出的必然性原则很值得讨论。
他在《解释篇》中说到,“任何存在的东西,当它存在的时候,它是必然的;而任何不存在的东西,当它不存在的时候,它是不可能的”。
他补充说:这并不意味着,所有存在的东西都是必然的,所有不存在的东西都是不可能的。
因为说:“任何东西,当它存在的时候,它是必然的”
,和说:“它仅仅是必然的”
,这两句话并不相同。
①需要指出,在这段话中,使用了时间连词“当”
(‘Dα)
,以代替条件连词“如果”。
德奥弗拉斯J H F特斯也陈述了一个同样的断定命题。
当他为各类必然的事物下定义时,他说第三类(我们不知道前两类是什么)是“这种存在物,因为当它存在的时候,那时它不存在是不可能的。