友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
狗狗书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

亚里士多德的三段论-第34章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




    公理1,2与4都可确证,但从公理3用代入b1,c2,a0我们得'到:CKA12A01A02=CK10=C10=0。

    用在自然数域的解释来作独立性的证明也是可能的。

    例如,我们要证明公理3独立于其余公理,我们能够把Aab定义为a+1b,而把Iab定义为a+b=b+a,Iab是常真的,因而,

…… 141

    26。三段论的断定命题的推导A                                                                                           921

    公理2与4确证了,公理1也确证了,因为a+1总是不同于a的。

    但公理3,即“如果b+1c并且a+1b,则a+1C”

    a就不能确证。

    取3替a,2替b,以及4替c,则前提将会是真的,而结论是假的。

    从以上的独立性证明得出:没有三段论的单个的公理或“原则”。

    1—4这四条公理可以机械地用“并且”

    这个字联结成为一个命题,但是它们在这个没有有机联系的合取式中,仍然保留着差别而并不代表一个单个的观念。

    26。三段论的断定命题的推导A用我们的推论规则以及借助于演绎理论从公理1—4我们能够引出亚里士多德逻辑的所有断定命题。

    我希望在作了前面几节的解释之后,以后的证明就会是完全可以理解的。

    在所有三段论的式中,大项用c表示,中项用b表示,小项用a表示。

    大前提首先陈述,以便易于将公式与各式的传统名称相比较①。

    A。换位定律Ⅶ。

    pAbc,qIba,rIac×C4—5'                   '                   '5。

    CAbcCIbaIac5。

    ba,ca,ab×C1—6'①在1929年出版的我的波兰文教科书《数理逻辑初步》(Elements

    of

    mathe-maticalogic)

    (见第62页,注①)中,我第一次表明已知的三段论的断定命题怎样可以从公理1—4形式地推出(第180—190页)。

    在上述教科书中说明的方法,由I。

    M。

    波亨斯基教授在他的论文“论直言三段论”

    中稍作修改后加以采纳。

    见《多明尼卡研究》(Dominican

    studies)卷i,牛津1948年版。

…… 142

    031第四章 用符号形式表达的亚里士多德系统

    6。

    CIabIba(I前提的换位律)

    Ⅲ。

    pAbc,qIba,rIac×C57' C7。

    CIbaCAbcIac7。

    ba,cb×C2—8'8。

    CAabIab(肯定前提的从属律)

    Ⅱ。

    qIab,rIba×C6—9'              '9。

    CpIabCpIba9。

    pAab×C8—10'10。

    CAabIba(A前提的换位律)

    6。

    ab,ba×1'1。

    CIbaIabⅥ。

    pIba,qIab×C1—12'              '12。

    CNIabNIba12。

    RE×1313。

    CEabEba(E前提的换位律)

    Ⅵ。

    pAab,qIab×C8—14'                '14。

    CNIabNAab14。

    RE,RO×1515。

    CEabOab(否定前提的从属律)

    B。肯定式Ⅹ。

    pAbc,qIba,rIac×C4—16'16。

    CsIbaCKAbcsIac16。

    sIab×C6—17'17。

    CKAbcIabIac(Dari)

    16。

    sAab×C10—18'

…… 143

    26。三段论的断定命题的推导A                                                                           131

    18。

    CKAbcAabIac(Barbari)

    8。

    ab,ba×19'19。

    CAbaIba16。

    sAba×C19—20'20。

    CKAbcAbaIac(Darapti)

    Ⅺ。

    rIba,sIab×C1—21'                '21。

    CKpqIbaCKqpIab4。

    ca,ac×2'2。

    CKAbaIbcIca21。

    pAba,qIbc,bc×C2—23'23。

    CKIbcAbaIac(Disamis)

    17。

    ca,ac×24'           '24。

    CKAbaIcbIca21。

    pAba,qIcb,bc×C24—25'25。

    CKIcbAbaIac(Dimaris)

    18。

    ca,ac×26'           '26。

    CKAbaAcbIca21。

    pAba,qAcb,bc×C26—27'                  '                '27。

    CKAcbAbaIac(Bramantip)

    C。否定式

    XI。

    pIbc,qAba,rIac×C23—28'28。

    CKNIacAbaNIbc28。

    RE×2929。

    CKEacAbaEbc29。

    ab,ba×30'

…… 144

    231第四章 用符号形式表达的亚里士多德系统

    30。

    CKEbcAabEac(Celarent)

    Ⅸ。

    sEab,pEba×C13—31'31。

    CKEbaqrCKEabqr31。

    ac,qAab,rEac×C30—32'32。

    CKEcbAabEac(Cesare)

    Ⅺ。

    rEab,sEba×C13—33'                 '3。

    CKpqEabCKqpEba32。

    ca,ac×34'34。

    CKEabAcbEca3。

    pEab,qAcb,ac,ba×C34—35'35。

    CKAcbEabEac(Camestres)

    30。

    ca,ac×36'           '36。

    CKEbaAcbEca3。

    pEba,qAcb,ac,ba×C36—37'37。

    CKAcbEbaEac(Camenes)

    Ⅱ。

    qEab,rOab×C15—38'                 '38。

    CpEabCpOab38。

    pKEbcAab,bc×C30—39'                             '39。

    CKEbcAabOac(Celaront)

    38。

    pKEcbAab,bc×C32—40'40。

    CKEcbAabOac(Cesaro)

    38。

    pKAcbEab,bc×C35—41'                             '41。

    CKAcbEabOac(Camestrop)

    38。

    pKAcbEba,bc×C37—42'42。

    CKAcbEbaOac(Camenop)

…… 145

    26。三段论的断定命题的推导A                                                                            331

    XI。

    pAbc,qIba,rIac×C5—43'43。

    CKNIacIbaNAbc43。

    RE,RO×4。

    CKEacIbaObc4。

    ab,ba×45'            '45。

    CKEbcIabOac(Ferio)

    31。

    ac,qIab,rOac×C45—46'46。

    CKEcbIabOac(Festino)

    Ⅹ。

    pEbc,qIab,rOac×C45—47'47。

    C
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!