按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
A 的证据;在所有属于这一类并且可以检验的证据当中,我们发现一部分P
是真实的;因此我们通过归纳推论出有一种概然性P 有利于佐罗亚斯特事例
中的相似证据。这样频率加上归纳就包括了概然性的这种用法。
或者假定我们象巴特勒主教那样,说“宇宙大概是造物主精心策划的结
果”。这里我们是从类似錶蕴涵錶匠这一类的次要论证来开始的。中国有一
种大理石,这种大理石有时碰巧能产生类似艺术家绘成的图画;我就曾经见
过最令人感到惊奇的一些实例。但是这种情况太罕见了,所以在我们看见一
张图画的时候我们有理由以很大的概然性(在假定归纳的情况下)推论出一
个艺术家来。那位当主教的逻辑学家所能做的,象他用他的书名来强调的那
样,只是证明这种类椎;我们认为这是可以怀疑的,但却不能纳入数学的概
率论中去。
因此,到现在为止,看来可疑性和数学的概率——后者是就有限频率的
意思来讲的——是自然律和逻辑法则之外唯一需要的概念。可是这个结论只
是暂时性的。在我们还没有考察某些另外提出来的“概然性”的定义之前,
我们是不能说出什么确定的意见的。
第四章米西斯—莱新巴哈的频率说
两个当时住在君士坦丁的德国教授所写的两本重要的书以不同于上章所
用的方式提出了关于概率的频率解释。①。。
莱新巴哈的著作是米西斯著作的发展,在各个方面都是同一理论的更好
的说明。因此我将只讨论莱新巴哈的著作。
莱新巴哈在列举出概率计算的公理之后,他就提出一种看来是由于见到
统计上的相互关连而想出的解释。他假定两个级数(X1,X2,。。xn,。。),。。
(y1,y2,。。yn; 。。),以及O 和P 两个类。有些x 或者所有x 属于O
类;莱新巴哈感到兴趣的问题是:与x 相对应的y 属于P 类的频率是多少?
举例来说,假定你在研究一位丈夫是否因为他的太太吩叨不休而想自杀
的问题。就这个事例来说,X 都是妻子,y 都是丈夫,O 类由吩叨不休的人组
成,P 类由自杀的人组成。然后已知一个妻子属于O 类,我们的问题是:她
的丈夫属于P 类的频率是多少?
让我们看一看两个系列中各自由前n 项组成的部分。假定在前n 个X 当
中,有a 项属于O 类,并且假定这些当中有b 项使得与x 相对应的y 属于P
类。(与x 相对应的y 和x 具有相同的下标。)这样我们说在从x1 到xn 的
整个部分中O 和P 的“相对频率”是b/a。[如果所有X 都属于O 类,那么a=n,而相对频率就是b/n ]我们用“Hn(O,P)”来表示这种相对频率。
我们现在进一步给“P 在已知O 的条件下的概率”下定义,这个概率我
们用“W(O,P)”来表示。这个定义是:W(O,P)是当n 无限增大时Hn(O,
P)的极限。
我们使用一点数理逻辑就可以使这个定义大大简化。首先,两个系列是
不必要的。因为我们假定两个系列都是级数,因而在它们的项目之间存在着
某种构成——对应关系的东西。如果这叫作S,那么说某一个y 属于一个P
类就等于说与它对应的X 属于那个由对于P 的分子当中某一个分子具有S 关
系的项目所组成的类。例如,设S 是妻子对于丈夫的关系;如果y 是一个结
过婚的人,并且X 是他的妻子,那么y 是一个政府官员这句话在并且只有在
X 是一个政府官员的妻子的情况下才为真。
其次,承认不是所有的X 都属于O 类这种情况并没有什么好处。这个定
义只有在无限数目的X 属于O 类的情况下才是适当的;在这种情况下,那些
属于O 类的X 形成一个级数,而我们就可以把其它剩下的部分忘记。这样如
果我们换用下面的说法,我们就把菜新巴哈的定义中最重要的部分保留下
来:
设Q 为一个级数,α是某个类,就α当中重要的实例来说,在Q 这个系
列中存在着比任何已知分子还要靠后的分子。设m 为α的分子在Q 的前n 个
分子当中的数目。那么我们把W(Q,α)定义为当n 无限增大时m/n 的极限。
也许是由于疏忽,从莱新巴哈的说法来看,好象概率的概念只适用于级
数,而完全不适用于有限类。我认为这并不是他的本意。举例来说,人类是
一个有限类,并且我们愿意在生死统计上使用概率,而完全按照定义的说法
是不能做到这一点的。作为一件心理事实来看,当莱新巴哈说到n=无限大
①
理查德·冯·米西斯《概率、统计与真理》第二版,维也纳,1936(第一版,1928)。汉斯·莱新巴哈
《概率论》来登,1935。并参看后者的《经验与预见》,1938。
时的极限的时候,他是把极限当作某个只要在n 从经验观点上看是大的情况
下就可以非常接近的数,即是说只要在n 与我们的观察手段所能达到的最大
限度相距不远的情况下。他有一个公理或者公设,意思是说就每个大的可以
观察的n 来说,如果存在着这样一个数,那么它就接近等于n=无限大时的
极限。这是一个很别拗的定义,不仅因为它是随意规定的,而且还因为我们
所研究的纯粹数学范围以外的大多数系列都不是无限系列;我们确实可以怀
疑它们当中任何一个是否存在。我们习惯于假定时空是连续的,这就蕴涵着
无限系列的存在;但是这种假定除了为了数学上的方便而外是没有任何基础
的。
为了使莱新巴哈的理论变得尽可能适用,我将假定就有限系列的范围而
论,上一章所绘的定义可以保留,而新的定义只是为了使我们能把概率用于
禾限系列而做的一种扩充。这样他的Hn(O,P)就将是一种概率,但却是一
种只能应用于系列的前n 项的概率。
作为他的归纳形式,莱新巴哈假定了大体如下的公设:假定我们已经对
于O 和P 的相互关连做过N 次观察,使得我们对于直到n=N 为止所有n 的值
都能计算出Hn/(O,P),并且假定对于整个后一半n 的值来说,Hn(O,P)
与某一分数P 相差永远小于ε,这里ε是很小的数。然后我们将假定不管我
们怎样增大n,Hn(O,P)将仍然不超出这些狭窄的界限,因而作为n=无限
大时的极限的W(O,P)也不会超出这些界限。如果没有这个假定,关于n=无限时的极限我们也就不会有任何经验上的证据,而专为了它们才做出这
个定义的那些概率也就一定完全不能被人认识。
面对着上面所说的困难,人们可以为莱新巴哈的理论提出两点辩护理
由。第一,他可能认为假定n 无限接近无限大并不必要;就所有实际用途来
说,只要n 可以变得非常大就够了。比方说假定我们在研究生死统计。保险
公司并不关心再过一万年之后生死统计上所发生的变化;它所关心的最多不
过是今后一百年的事。在我们已经积累统计结果之后,如果我们假定直到我
们掌握了十倍于目前的数据之前,频率将大体保持不变,这就足以应付所有
实际的需要。莱新巴哈可能说当他说到无限大时,他用的是一种方便的数学
速记,意思只表示“这个系列中我们一直还没有研究过的一大部分”。他也
许说,这种情况极其类似用经验方法确定速度的情况。从理论上讲,一个速
皮只有在可测量的空间和时间的微小性没有限度的条件下才可以确定;从实
用上讲,因为不存在这样的极限,我们也就从来不能知道在一个瞬间哪怕是
近似的速度。诚然我们可以相当准确地知道一小段时间内的平均速度。但是
即使我们假定连续性的公设,通过比方说一秒钟的平均速度我们也绝对得不
到关于这一秒钟的一个特定瞬间的速度的任何知识。一切运动也许可能都是
由为一些无限速度的瞬间所隔开的静止时间所组成的。如果我们不依靠这种
极端的假说,即使我们假定数学意义上的连续性,任何一个瞬间的有限速度
都可以与一段一定时间内任何有限平均速度不相抵触,不管包括这个瞬间的
这段有限时间怎样短暂。可是就实际用途来说,这并没有什么关系。除了类
似爆炸的少数现象外,如果我们认为通过一段很短可测量时间所得到的任何
瞬间速度近似于那段时间的平均速度,那么我们就会发现物理学的定律是能
够证实的。因此我们可以把“瞬间速度”当作为了方便而想出来的数学上的
虚构。