按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
小,它谦卑地静静呆在正中央稍稍靠上的地方。
重新仔仔细细审视,就发现这式子不同寻常。譬如,长方形的面积等于长乘以宽,直角三角形斜边的平方,等于其余两边的平方之和,等等。与这些我所知道的为数不多的公式相比,它出奇地不平衡。出现的数字只有1和0,运算方法也只有加法一种,固然是简洁之极,但头上的符号怎么看都觉得头重脚轻。这一头重,最终由一个0来将它支撑了起来。
但是,说是查资料,却想不出该以什么为线索。无奈之下,只好随手抽出手边的几本哗啦哗啦地翻起来。
这一本那一本,这一页那一页,除了数学还是数学。简直难以置信,这些竟是与自己同样的人类所共同拥有的。这里的一页一页,可以揭开宇宙奥秘的设计图?可以抄写的上帝的记事本里的东西?
。。
博士的爱情算式80
。小[说网}
在我想象当中,宇宙的造物主,是在某个遥远的天边编织着蕾丝。那是能够透过无论何等微弱的光线的、用上等丝线织就的蕾丝。图案仅只存在于造物主脑中,任谁都无法窃取图样,他们也无法预测下一个出现的纹样。织针永不停歇,蕾丝无限延伸,随风起伏、轻轻摇摆。令人禁不住要拿在手里放到光下细细赏玩。还要眼里噙着泪水,如痴如醉地把它贴在脸颊上摩挲。还要祈求上苍,恳求他允许我们想办法用自己的语言重新编织业已编好的纹样。哪怕一点点的边脚也好,求他应允我将它转编成自己独有的东西,带回地上。
蓦地,一本论述费马大定理的书跃入眼帘。内容与其说是数学书,倒不如说更像是历史读物,因此我也能够理解到某种程度。我知道费马大定理是一个尚未解决的难题,可我着实大吃一惊:不曾想定理的内容表达得简洁至此。
当xn+yn=zn,n是大于2的自然数时没有正整数解。
哎?就这么一点点?我忍不住要说出来。我感到满足算式的自然数要多少有多少。假设n等于2,那就是完美的毕达哥拉斯定理。难道n仅大1,就会破坏秩序?根据站着时粗粗翻看所得,这道命题并非来自于一片精彩的论文,而是费马匆匆写就的,费马本人以纸张不够为由不曾留下证明。从那以后,证明它成了数学世界里一个绝佳的目标,激起众多天才朝着它不断发起挑战,然而悉数碰壁而回。一个人一时的突发奇想,竟使得数学家们苦恼长达三个世纪之久,想到这,觉得数学家们也挺可怜的。
我有感于上帝的记事本之厚重、造物主编织的蕾丝之精巧。即便你再如何拼命一眼一眼沿着蕾丝网眼摸索过去,但只要你出现短短一瞬间的疏忽,便会丧失前进的线索。当你刚以为跑到终点而欢呼雀跃之时,更加复杂的纹样便随即出现。
毫无疑问,博士肯定也曾抓到过好几段蕾丝边。那里透过光线显现的又是怎样美妙的纹样呢?我祈祷,惟愿博士的记忆里至今仍铭刻着那些美妙的纹样。
书中这样说明,费马大定理,它并非纯粹是满足数学爱好者好奇心的一个谜,它是何等地直指数论的根本。在第三章的中间部分,给我找到了与博士所写的一模一样的算式。就在我漫无目地一页页往下翻的时候,那一行在我视野一角一闪而过,但我并没轻易放过它。我把便条和书进行了谨慎细致的比对,一点没错。它被称为欧拉公式。
名称是立刻懂了,但要理解公式的涵义还有困难。我站在书架之间,把与公式相关的那一页翻来覆去地阅读了好几遍。特别难懂的部分,就照博士所教的出声朗读了几遍。数学角上仍旧只有我一个人,不用怕妨碍到任何人。我侧耳倾听着被吸进数学书的间隙里去的自己的声音。
π我懂,是圆周率。i博士也教过我,是-1的平方根,是虚数。麻烦的是e。e好像和π一样,是无限不循环的无理数,是数学上最最重要的常数之一。
。d xs
博士的爱情算式81
daueengiaouoang
首先必须从什么叫对数入手。所谓对数,是指在求一个常数的多少次方幂时的指数值。此时,该常数称作“底”。例如,假设底为10,则100的对数(log10100),因为100=102,所以对数值为2。
在平常使用的十进制里,使用以10为底的对数比较方便,便将它取名为常用对数。在从数学理论上讲,以e为底的对数好像也担负着不可估量的职责,这一类称作自然对数。需要思
考的问题是,e的多少次方幂等于已经给出的数字。也就是说,e为“自然对数的底数”。
至于关键的这个e,根据欧拉算出的结果,e=2。71828182845904523536028……
小数点后面的数字无穷无尽,与上述解释说明以及e的值相比,算式显得非常明快。
e=1+1〖〗1+1〖〗1×;2+1〖〗1×;2×;3+1〖〗1×;2×;3×;4+1〖〗1×;2×;3×;4×;5+……
只不过,正因为明快,便使人感觉e这个谜越发地高深莫测了。
说起来,表面上取了个自然对数的名字,可究竟什么地方称得上自然了?换成符号便无法表达,无论多大多长的纸都写不下,永远看不到最后一位小数,用这样的数字作底,难道不是不自然之极吗?
就像蚂蚁随意爬成的队伍,也像婴儿笨拙地堆起来的积木,这里罗列的数字看似纯属偶然,毫无秩序可言,但其实其中贯穿着合情合理的意志,就是这样,才更叫人束手无策。上帝的安排深不可测。而且必定有人能够察觉这种安排。尽管包括我在内的芸芸众生,并未公正地对他们所付出的辛劳表示过感谢。
我放下被书压麻痹的手,合上书本,缅怀起十八世纪最伟大的数学家莱昂哈德·欧拉莱昂哈德·欧拉(leonhard euler; 1707—1783):瑞士数学家,发展了微积分学,在偏微分方程式、椭圆函数论、变分方法等方面做出重大贡献。。关于他,我一无所知,可仅仅将这个公式拿在手里,便感觉仿佛感触到了他的体温。欧拉他运用一个不自然之极的概念,编写出了一道公式。他在貌似毫不相干的数字之间发现了自然的联系。
e的π乘i次方幂加1等于0。
我重又看了看博士的便条。两个数字,一个循环至尽头的尽头,一个决不显露真面目、虚无飘渺,它们描画出简洁的轨迹,落于地上一点。虽然圆自始至终不曾露面,但π却不期然地从空中飘落到e的身边,来和生性腼腆的i握手。它们相互靠近,屏声静气地静静待着,直到一名人类进行了一道加法运算,令世界刹那间毫无征兆地风云变幻——一切重归0的怀抱。
欧拉公式是划破黑暗的一道流星,是黑魆魆的洞窟里刻着的一行诗。其中蕴含着的美打动了我,我把便条重新收进了皮夹。
走下图书馆的阶梯,蓦然回首,数学角依旧空无一人、寂寂无声,依旧是谁也不知道在那里面隐藏着许多那样美好的事物。
??
博士的爱情算式82
,
第二天,我又去了图书馆,仅仅为了查阅另一桩之前一直记挂在心头的事情。我取出1975年地方报纸的缩印版,耐心地一页一页翻着砖头似的厚厚的一沓册子。在1975年9月24日的地区版上,果然刊登着我要找的报道。
23日下午4时10分左右,在×;×;町3条2号国道上,×;×;运输公司的×;×;司机(28岁)驾驶的轻型卡车越出中间线驶入反向车道,与×;×;大学数学研究所教授×;×;先生(47岁)驾驶的自备车正面相撞。×;×;先生脑部受到重创。坐在副驾驶席上该先生的大嫂×;×;女士(55岁)右腿骨折,伤势严重。卡车司机也碰伤额头等处,但均为轻伤。警方认为事故原因在于昏睡驾驶,正在向肇事卡车司机调查案发经过……
我合上厚册子,耳畔响起老太太将手杖顿地的声音。
那以后,直至平方根的照片褪色发黄以后,我依然保存着博士的便条不愿丢弃。欧拉公式之于我,是支柱、是警句、是珍宝,还是博士留给我的一份纪念品。
我思来想去想要弄明白当时博士为何写下了这条公式。博士他没有大吼大嚷,也没有拍桌子以示威胁,而仅只写下这一道公式便径自离开,安安静静平息了老太太同我的