按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
我想弄明白的,是他们会不会将理论上的构想归为本质物体。其实电子只不过是我们使用的一种理论,但对于帮助我们了解宇宙运作十分有用,有用到我们简直认为电子是真实无讹的。而我当时是想用对比的方法,来说明“理论”这个概念。在砖块的例子中,接下来我要问的是:
“砖块的内部又如何呢?”然后我会指出,从来没有人看过砖的内部!每当你劈开一块砖,你看到的只是另一个表面,“砖块有内部”只不过是个可以协助我们了解事物的简单理论。电子理论也有类似之处。因此我问:“砖块算不算是一种‘本质物体?’”
答案倾巢而出。有人站起来说:“一块砖就是单独的、特别的砖。这就是怀海德所说的本质物体的意思。”
可是又有人说:“不,本质物体的意思并不是指个别的砖块,而是指所有砖块共有的普遍特性,换句话说,‘砖性’才是‘本质物体。’”
另一个家伙站起来说:“不对,重点不在砖的本身。
‘本质物体’指的是,当你想到砖块时,内心形成的概念。”
他们一个接一个地起立发言,我发现这是我出生以来,第一次听到那么多关于砖的天才说法。后来,就像所有典型的哲学家一般,场面一片混乱。好笑的是,在先前那么多次的讨论中,他们从来没有问过自己,究竟像砖块这类简单物体是不是“本质物体”?更不要说电子了!
外行人问内行话
之后,在吃晚餐时,我转移到生物学家那一组去。我一向对生物学深感兴趣,而他们的话题也十分有趣。其中一些人还邀我去旁听即将开讲的“细胞生理学”。虽然我学过一点生物学,这却是研究院程度的课呢!“你们觉得我听得懂吗?教授会让我旁听吗?”我问。
他们替我问主讲教授哈维(e。 newton harvey),他曾经做过很多关于“发光细菌”的研究。哈维答应了,条件是我必须跟班上其他同学一样,完成所有的作业及论文报告。
上第一堂课之前,邀我听讲的几位同学要我看一些植物细胞。透过显微镜,我看到许多不停在移动的绿色斑点,那是在光照之下制造出糖的叶绿素。我抬起头问:“它们如何运行?是什么力量在推动它们?”
没有人晓得答案。后来我才知道,这在当时还是个未解之谜。就这样,我学到一点关于生物学的特性:你可以很轻易便提出一个非常有趣的问题,而没有人知道答案。
但在物理学,你必须先稍微深入学习,才有能力问一些大家都无法回答的问题。
上第一课时,哈维教授首先在黑板上画了一个很大很大的细胞图,并且标示出它的内部结构,然后逐一讲解。
他说的我大部分都听得懂。
下课之后,邀我旁听的同学问:“怎么样?你喜欢这堂课吗?”
“还不错,”我说,“唯一没听懂是有关卵磷脂(lecithin)的部分,什么是卵磷脂?”
那家伙就用他那单调无味的声音说:“所有生物无论是动物或植物,都是由小小砖块一样的东西,叫做‘细胞’
所组成的……”
“听着,”我不耐烦地说,“你说的那些我统统知道,否则我也不会来听课。卵磷脂到底是什么?”
“我不知道。”
我跟其他人一样读论文、做报告。第一篇指定给我读的是压力对细胞的影响,哈维教授特别挑了这篇论文给我,因为其中牵涉到一点物理。我完全理解这份论文的内容,可是当我在班上宣读我的读后心得时,却把所有的专有名词都念错了;当我心中想的是“分裂球”(blastomere),口中却念出“胚球”(blastosphere)时,班上同学简直是笑得人仰马翻,直不起腰来。
第二篇指定给我的是艾吉瑞恩(edgar adrian)和布朗克(detlev bronk)的论文。他们证实了神经冲动是尖锐的单脉冲波现象。以猫为实验对象,他们测量了神经间的电压。
我开始研读这篇论文。它不停地提到伸肌、屈肌或排肠肌等等。这个肌、那个肌我都念得出口,可是我完全不晓得它们位于猫的什么部位,或者跟其他神经线的相关位置。因此,我跑到图书馆放生物图书的部分,随便抓着一个馆员,请她替我找一幅猫体构造图。
“猫体构造图?”馆员花容失色地说,“你指的是生物分类表吧?”从那时候开始,话就传开了,说有一个生物系的笨蛋研究生,跑到图书馆去找“猫体构造图”。
轮到我做报告时,我先在黑板上画了一只猫,并开始将各部分肌肉标示出来。很多同学打断我的动作:“那些我们都知道了。”
“哦,”我说,“你们都知道?难怪你们念了四年的生物,我却还是一下子便追上你们的程度了。”他们把所有时间都浪费在死背名词上了,而这些东西只要花个15分钟便全部可以查出来。
到加州理工洗碟子
二次大战后,每年暑假我都会开车到美国各地旅行。到加州理工学院任教之后,有一年我跟自己说:“这个暑假我不要换另一个地方玩了,不如试试换另一门的学问来玩玩。”
那时候刚好是华森(james dewey watson)和克里克(francis crick)发现去氧核糖核酸(dna)之后不久,而由于戴尔布鲁克(max delbruck,著名的物理兼生物学家)的实验室就在加州理工学院,许多极为优秀的生物学家都聚集在那里。华森也应邀到加州理工演讲,讨论dna的密码系统;他的演讲我都去听了,也参加了生物系的许多研讨会,对生物充满浓厚兴趣。对生物学而言,那是个很令人兴奋的年代,而加州理工则是做生物研究的极佳所在。
我不认为自己有足够能力应付真正的生物研究,因此,当我计划将那个暑假花在生物学上时,我只不过打算在生物实验室内走动走动,帮他们“洗洗碟子”,在一旁看看他们做些什么,可是,等我跑到生物实验室向他们说明意愿时,一位年轻的博士后研究员、同时也是实验室的主管艾德加(robert edgar),说他不会让我那样游手好闲。
他说:“你应该跟其他研究生一样,做些实实在在的研究工作,我们也会给你一个题目去研究。”这样的建议,我当然乐于接受!
我选了一门讨论噬菌(phage)的课。噬茵是一种含有dna的滤过性病原体,它会攻击细菌。而在这门课中,我们学习如何做有关噬菌体(bacteriophage)的研究。
很快我就发现,由于懂得物理和数学,学习生物时轻松多了。例如,我知道液体中的原子如何运动,因此离心机的工作原理对我而言,不算高深莫测。又由于具备了统计学上的知识,我很清楚在盘点培养皿上的斑点时,所牵涉的统计误差。换句话说,正当其他生物系的同学努力了解这些“新”观念时,我却可以专心学习真正跟生物有关的学问。
在实验室里,我学会了一项很有用的技巧,到今天还经常用到。他们教我们如何单手拿着试管,而同时用中指和食指把管盖打开,让另一手自由活动,做其他事情——像拿着吸量管,小心翼翼地把氰化物溶液吸进管中……等。
现在,我能够一手拿着牙刷,用另一手拿着牙膏,并把盖打开、挤牙膏,再把它旋紧。
实验毫无所获
当时,生物学家已经发现,噬菌可能发生突变,以致影响到它们攻击细菌的能力;我们的任务就是研究这些突变。不过,部分噬菌会发生二次突变,重新恢复攻击细菌的能力,其中一些经历两次突变的噬菌跟突变前一模一样,好像什么突变都没发生过一样。另外一些却有不同的变化:
它们攻击细菌的速度比正常时较快或较慢,因此细菌的繁殖也较正常速度稍快或略慢。换句话说,“负负得正”的“反突变”(back mutation)会发生,但噬菌恢复正常的情形不一定很完美,有时候它们只能恢复一部分的能力。
艾德加建议我做个实验,看看反突变是不是在dna螺旋结构中的同一位置上发生。我非常小心地做了很多繁复实验之后,找到了三个反突变的例子,发生的位置都很接近——事实上,比大家曾经观测过的例子都更为接近——噬菌原有功能也回复部分。这是一项冗长的研究工作,整件事情也要靠点运气,因为你必须耐心等待二次突变的出现——而那是十分罕见的。
我不断思考如何使噬菌更常发生突变,以及怎样能够更迅速地观测到它们,但还没有想到方法,暑假已经过完了,我也逐渐对这个研究题材失掉兴趣。
这时,我的休假年快到了(注:美国