按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
铃散布在预料运动物体将要经过的空间中,这样,在物体经过以
后,那些“响着的铃”就代表物体的径迹。在古典物理学中,人
们想把这些铃做得多小多灵敏都可以,因此,在使用无限多个无
限小的铃的极限情况下,同样也可以用任意大的精确度构成轨道
的概念。但是,对机械系统施加量子限制,同样会破坏这种局面。
如果铃太小了,那么,按照公式(15),它们从运动物体取走的
动量就会太大,即使物体只击中一个铃,它的运动状态也己大受
干扰了。如果铃做得太大,那么,每一个位置的测不准性又会变
得非常大,由此得到的最后轨道同样将是一条弥散的带。
我怕,上面这一切关于观察者怎样观察轨道的讨论,可能会
造成一种过于看重技术的印象,使大家倾向于认为,尽管我们的
观察者无法靠他上面所用的办法把轨道确定下来,但如果用某种
比较复杂的装置,大概就能得到他所需要的结果。不过,我应该
提醒大家,我们在这里并不是讨论在某个物理实验室里进行的某
个特定的实验,我们是把最普通的物理测量问题概念化了。要知
道,我们这个世界上所存在的任何一种作用,要不是属于辐射作
用,就必定是属于纯机械作用,就这一点而论,任何一种精心设
计的测量方法都离不开以上两种方法的原理,因此,它们最后必
将导致相同的结果。既然我们的理想的“测量仪器”可以概括整
个物理世界,我们最后就不能不作出结论说,在量子规律起统治
作用的世界里,像精确的位置或形状精确的轨道这样的东西,是
根本不存在的。
我们再回头来讨论我们那个实验者,现在我们假定他想求出
量子条件所强加的限制的数学表达式,我们已经看到,在上面所
用的两种方法中,对位置的测定总是会对运动物体的速度产生干
扰。在光学方法中,由于力学的动量守恒律,粒子受光量子撞击
后,它的动量必定会产生一种测不准性,其大小同所用光量子的
动量差不多。因此,我们可以运用公式(15),把粒子动量的测
不准性写成
Δp粒子≈h/λ(16)
再想起粒子位置的测不准性取决于光量子的波长(Δq=λ),
我们便由此得出
Δp粒子×Δq粒子≈h (17)
在机械方法中,运动粒子的动量由于被铃取走了一部分,也
会变成测不准的。运用公式(15),再回想起在这种场合下粒子
位置的测不准性由铃的大小所决定(Δq≈l),我们又得到与
前一种场合相同的最后公式(17)。可见,公式(17)是量子论
的最基本的测不准关系式。这个公式是德国物理学家海森伯最先
导出的,因而被称为海森伯测不准关系式。它表明,位置测定得
越准确,动量就变得越测不准,反之亦然。
我们再回想起动量是运动粒子的质量与速度的乘积,便可以
写出
Δv粒子×Δq粒子≈h/m粒子 (17)
对于我们通常碰到的物体来说,这个量是小得荒谬可笑的。即使
对于质量只有10…7克的较轻的尘埃粒子,不管是位置还是速度,
也仍然可以精确地测定,精确度达到0.000 000 01%!但是,在
电子(质量为10…27克)的场合下,ΔvΔq的乘积大约达到100。
在原子内部,电子的速度至少应该确定在106米/秒的精确度范
围内,不然,它就会从原子中逃出。这样一来,位置的测不准性
就等于10…10米,也就是说,已经同整个原子一样大了。由于这
种扩大,电子在原子中的“轨道”便弥散了,轨道的“厚度”变
得等于轨道的“半径”。由此可见,这个电子将同时出现在原子
核周围的每一点上。
在过去20分钟内,我已经尽力为大家描绘出我们批判古典
运动概念所造成的灾难性后果。现在那些优美的。有严格定义的
古典概念已变得支离破碎,让位给可以说像烂糊粥那样的东西了。
自然,你们会问我:物理学家们打算怎样用这种处处存在测不准
性的观点,去描述任何一种现象呢?
我们现在就来谈谈这个问题。很明显,既然我们由于位置和
轨道都发生弥散,一般不能用数学上的点来定义物质粒子的位置,
也不能用数学上的线来定义粒子的运动轨道,那么,我们就应该
用别的描述方法来提供这种“稀粥”(可以这样称呼它)在空间
不同点上的“密度”。从数学上说,这意味着需要采用连续函数
(流体动力学中所用的那一种),而从物理学上说,这要求我们
采用“这个物体大部分在这里,但有一部分在那里”或者“这枚
硬币有75%在我口袋里,而有25%在你口袋里”这种所谓“出现
密度”的说法。我知道,这样的句子会把你们吓一跳,不过,由
于量子常数的值非常小,你们在日常生活中永远不会需要使用它
们。可是,如果你想研究原子物理学,那么,我就要严肃地劝你
首先使自己习惯于这种表达方式了。
在这里,我必须预先警告大家不要产生一种错误的想法,也
就是不要错误地认为,这种描述“出现密度”的连续函数在我们
普通三维空间中具有物理学上的现实意义。事实上,如果我们想
描述两个粒子的行为,我们就必须回答当第一个粒子出现在某一
点时第二个粒子出现在什么地方的问题。要想做到这一点,我们
必须采用含有6个变量(2个粒子各有3个坐标)的函数,而这
样的函数在三维空间中不可能是“定域”函数。当系统更复杂时,
必须采用含有更多变量的函数。从这个意义上说,量子力学的“
波函数”类似于古典力学中粒子系统的“势函数”,也类似于统
计力学中系统的“熵函数”。它仅仅描述运动状态,并帮助我们
预测任何一种特定的运动在指定条件下可能产生的结果。因此,
只有在我们描述粒子的运动时,它对于我们所描述的粒子才暂时
具有物理学上的现实性。
描述一个粒子或粒子系统出现在不同地点的可能性有多大的
函数,需要有某种数学上的记法;按照奥地利物理学家薛定愕(
他最先写出定义这种函数的性状的方程)的意见,这个函数一般
用符号ψψ-来表示。
我不想在这里讨论薛定愕基本方程的数学证明,但我希望大
家注意一下导出这个方程的必要条件,这些条件当中最重要的。
一个是非常离奇的是,它要求这个方程的形式必须使得描述物质
粒子运动的函数能够显示出一切波动特性。
我们一旦推翻了古典概念,并用连续函数来描述运动,关于
波动性质的要求就变得容易理解多了。这种要求只不过是说,我
们的ψψ-函数的传播并不类似于热通过一堵一面被加热的墙壁的
传播,而类似于机械形变(声音)通过这种墙壁的传播。从数学
上说,这要求我们所寻找的方程具有明确的、相当严格的形式。
这个基本条件连同一个附加的要求——即要求我们的方程在用于
可以不考虑量子效应的大质量粒子时,应该变成古典力学中的相
应方程——实际上把寻找这个方程的问题,化成了一项纯数学的
作业。
如果大家愿意知道这个方程的最后形式是什么样,我可以在
这里把它写出来。这就是
在这个方程中,函数U代表作用于粒子(质量为m)的力势,对
于任何一种指定的力场分布,它都使运动问题有确定的解。利用
这种“薛定愕波动方程”,物理学家们已经为原子世界所发生的
一切现象,描绘出最完美而且最合乎逻辑的图景。
你们也许有人会觉得奇怪:为什么我没有使用人们在谈到量
子论时常常提到的“矩阵”那个术语?我应该承认,我个人是不
太喜欢这种矩阵的;因此,我宁愿不同它打交道。不过,为了使
大家不至于完全不知道量子论中的这种数学工具,我想用几句话
简单地谈谈它。正如大家已经看到的,人们总是用某种连续的波
函数来描述粒子或复杂力学系统的运动。这种函数往往相当复杂,
可以看做是由许多比较简单的振动(即所谓“本征函数”)组成
的,就像一个复杂的声音可以看做是由许多个简单的谐音组成的
那样。因此,我们可以通过给出各个分量的振幅,来描述复杂系
统的整个运动;由于分量(泛音)的数量无限多,我们必须写出
一个无限长的振幅表:
q11 q12 q13 …
q21 q22 q23 …
q31