友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
狗狗书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

弗雷德里克·波尔中短篇科幻小说集-第50章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



样苟延残喘。而这样的代价仅仅是开始而已。科学就是度量和解释;没有度量,解释便等于是雾中乱撞;而度量就是数目。如果要将书写数目的系统改观,你就必须更换几乎所有的有记载的人类知识的整体——这包括试验室报告和税务回票,价格核算和计时方法,有关介子行为的知识,以及纽约股票交易所的交易情报等等。

将世界上的主要文字记载从一种数目制转化为另一种,这样的计划是有碍于思维的。它的代价不仅无法以亿万美元来计算,而且即使花费人类亿万年时间或许也无法完成。

既然如此,为什么这种庞大的计划现在还要实施呢?

简单地讲,其答案是,机器也并不比俄国农夫敏捷多少。

这并不是说蔑视俄国人,而只是说全能自动电脑跟俄国农夫伊万有许多共同之处——这些共同之处中有一点就是,在进行十进位乘法和除法时技巧的缺乏。

让我们看看一个简单的数目——比如,87*93——看看我们,伊万,还有全能自动电脑是怎么算的。我和你,由于至少在年级制学校读过几年书,就会写下一个如此简洁的运算式:

87

*93

————

261

783

————

8091

这并不难算。如果情况不允许,我们也有可能在脑子里算出来。

但是,伊万却觉得万分艰难,因为他恰恰没有进过等级制学校(全能自动电脑也是如此)。伊万如果做类似的算题,就会使用一种被称为“俄国”——有时也被称为“半数跟加倍”(也就是指“调中跟重复”)的计算方法。这样计算时,只需将两列数目一边挨一边写下来。

第一列是以原数开始的,这个数字不断被二分,直到无法二分为止。伊万对分数一窍不通,所以他的算法是把数目去掉——比如,他把12当做25的半数。

第二列是以另一个数字开始的,以第一列原数二分的次数不断加倍。运算如下:

8793

43186

21372

10744

51488

22976

15952

算到这里之后,伊万看看左边或二分列中,找出偶数。他找到其中有两个——第四个数10,还有第六个数2。他将跟它们平行的右边(或加倍)列中的数目——也就是说,744和2976划掉。然后,将右列中余剩的数目加起来:

93

186

372

1488

5952

——

8091

可以看出,在曲曲折折费尽气力之后,伊万大功告成,算出了跟用乘法得出的同样的答案。

乍一看来,这并不是什么尽善尽美的方法。如果你想起伊万浑然不知乘法表为何物,你就会认为此法确实灵巧非凡。而伊万则摇身一变成为聪慧儒雅之辈。

不过,他并非那么聪慧儒雅,而依然一如愚人。但是,你如果责怪他从数目的二进位制求取帮助,他就会公开嘲笑你。

但不管怎样,这便可证明他算出来了。而且全能自动电脑及其电子同胞兄弟们今日也是这样算的。

为证实全能自动电脑是怎样运算的,让我们把某些数目拆开,看看其中包括些什么。

我们的二进位数目——比如说,87——实际上就是一种速记形式,(在这一例中)是8^1*10^1加7*10^0的“定位”讲法。数字越大,速记越显得短。比如1956,可写作:

1*10^31000

9*10^2900

5*10^150

6*10^06

——————

1956

(为防止你上高中时间过长,10^1就是10的意思;10^0指10除以10,或者是1。无论你上高中有多长时间,都应该记着10^2的意思是10乘以10,或者是100,如此类推。)

在许多科学幻想小说中(别处很少见),都说这十进位制属于人类的“天生的”数数制。因为,你瞧,我们每一个人不都有双手十指吗?我们切不要把它作为理论而纠缠不休。它如果真是这样,那么当我们的探索火箭发现十二进位的天外地域(或者换言之,当我们的考古学家发现古巴比伦人比我们现代人多六倍的指头)时,它就可通过大量的机会证实自身。此外,假若我们认定这个故事天经地义,那么我们便可对全能自动电脑做出这样的“解释”:由于计算机设有可用来查数的手指,所以不得不运用一种更简单的方法。这种更简单的体制,其名称就是“二重”或“二进”制。世界上大多数数目现在都正被翻译进这种体制,以求被输入、被消化在电脑中。

二进位制恪守十进位制的所有规则。它属于定位性的;它可以表示任何有限数目;它可以用来加、减、乘、除,求指数,以及人类及全能自动电脑所知的任何代数方程。惟一的差别是:它的基数是2,不是10。它削去十进位数中的10个基数中的8个——2,3,4,5,6,7,8和9——只剩下0和1。

当然了,你是可以这样来算数的。1是一;10是二;11是三;100是四;101是五;110是六;111是七;1000是八;1001是九;1011是十;如此类推。用它可加可减:

四100

加三11

——————

等于七111

用它可乘可除:

六110

被三除11

——————

等于二10

你可以不费吹灰之力算出来,而无需背诵乘法口诀。这样使你的青春时光自由自在,在夜晚尽情欣赏棒球比赛,或者访朋问友。

回过头来再看一下伊万的俄国式乘法;让我们以稍微不同的方式再重新运算一遍。让我们将两列数目都二分,左右都是这样。我们不再削掉数字,而要在奇数边上注上“1”,在偶数边写上“0”,这样:

871931

431460

211231

100111

5151

2020

1111

现在,你可能还不知道,你做出的结果是什么样子——伊万肯定也闻所未闻——实际上你已经将两个十进位数转化成二进位数的对等物了。从下向上读,1010111是二进位中的87,1011101是二进位中的93。

要理解这样做的意思,就要牢记我们是如何将一个十进位数分开的。一个二进位数也可以分成同样的份数。惟一的区别是,份数是2的乘方相乘,而不是10的乘方相乘。这样的话,1010111,就是下边说法的速记形式:

1*2^664

0*2^50

1*2^416

0*2^30

1*2^24

1*2^12

1*2^01

————

87

这就是我们刚才提到的原来的数字形式。

如果你将87和93这样的数字输入全能自动电脑,它的消化功能就会给搞乱——实际上,除非这些数字先被消化,否则它就无法消受。所以你必须像我们上面所做的那样,先将它们转化成二进位数目(“数字”或“数点”)。诸如1010111和1011101这样的二进位数,全能自动电脑处理得非常好。想做乘法吗?毫无困难。全能自动电脑,依其电子途径,会如是而行:

1010111

*1011101

———————

1011111

0

1010111

1010111

1010111

0

1010111

———————

1111110011011

这看起来叫人害怕,因为人们对这种东西很不熟悉;但是,得出的结果仍然跟87*93是一样的;它是下式的速记形式:

1*2^124096

1*2^112048

1*2^101024

1*2^9512

1*2^8256

1*2^7128

0*2^60

0*2^50

1*2^416

1*2^38

0*2^20

1*2^12

1*2^01

——————

8091

请看,这多么简洁!尽管数目很大,但可以看到处理时又变得多么快捷。

又比如,加法变成简单的计数(当然是二进位数——1,10,11,100等等的计数。如果愿意,你可以称之为“一”,一十”,“十一”,以及“一百”等等,并无妨碍)。将一组数目相加,比如:

101

100

110

111

———

10110

你只需简单地数右栏数字(1,10;写下0和1表示);然后数中栏数字,当然要从一开始算起(1,10,11;写下1和1表示);然后数左栏数字,还是从一开始算起(1,10,11,100,101;写下1和10表示;写下10)。

我认为,这跟一个代数式一样容易计算,乘法也差不多是这样。乘法只用写下数目,将位中的一个适当数目向左移,或者根本无需写下数目(取决于你是用“1”还是“0”乘那个数字)。因此,此外不外是相加;而相加已如上述,不过是数数而已,完全用不着乘法表!用不着死记硬背叫人生厌!无怪乎全能自动电脑和伊万都喜爱它!

如果说这样的二进位制有一个缺陷的话,那就是,它过分简洁明快,所以有些单调乏味。

不过,世上的工作都充满着单调乏味的操作
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!